Skip to main content

Solution and solid-state study of heteroleptic Hg(II)-thiolates: crystal structures of Hg4I4(SCH2CH2NH2)4 and Hg4I8(SCH2CH2NH3)2 n.nH2O.

Author
Abstract
:

Combination of 2-aminoethanethiol hydrochloride and HgI2 in water in the presence of a base yielded a cyclic molecular structure, [Hg4I4(SCH2CH2NH2)4] (1). For the same reaction in the absence of the base, a similar structure with protonated amines was expected; however, polymeric [Hg4I8(SCH2CH2NH3)2]n.nH2O2 was formed instead. The structures are quite variable despite similar reaction conditions. For instance, there is an additional Hg-N interaction in 1 due to the use of base. The environment around tetracoordinate Hg in 1 is comprised of S, N, and I atoms, with the ligand forming a five-membered chelate and the I atoms present alternate to each other. In the repeating unit of 2, three independent types of Hg atoms are observed, with HgSI3, HgS2I2, and HgI4 bonding environments that have both bridging and terminal I atoms. A simple mechanistic pathway for the formation of 1 and 2 is proposed that includes the presence of three- and four-coordinate Hg intermediates in the solution. Intermolecular hydrogen bonding involving N, I, and S in 1 and N, I, and O atoms in 2 create extended three-dimensional networks. The shortest Hg... Hg distances are found to be intrachain in the range 3.938-3.962 A and indicate no interaction between these atoms. The solution studies (UV-vis and NMR) along with solid-state (IR, Raman, and X-ray) studies for 1 and 2 confirm retention of the structural configuration in the solution. The thermal study of 2 indicates that degradation of the complex occurs in a single step, in contrast to 1, which takes a more complicated decomposition pathway.

Year of Publication
:
2006
Journal
:
Inorganic chemistry
Volume
:
45
Issue
:
5
Number of Pages
:
2112-8
Date Published
:
2006
ISSN Number
:
0020-1669
URL
:
https://doi.org/10.1021/ic051993a
DOI
:
10.1021/ic051993a
Short Title
:
Inorg Chem
Download citation