Skip to main content

Mutation-Specific Differences in Kv7.1 (<i>KCNQ1</i>) and Kv11.1 (<i>KCNH2</i>) Channel Dysfunction and Long QT Syndrome Phenotypes.

Author
Abstract
:

The electrocardiogram (ECG) empowered clinician scientists to measure the electrical activity of the heart noninvasively to identify arrhythmias and heart disease. Shortly after the standardization of the 12-lead ECG for the diagnosis of heart disease, several families with autosomal recessive (Jervell and Lange-Nielsen Syndrome) and dominant (Romano-Ward Syndrome) forms of long QT syndrome (LQTS) were identified. An abnormally long heart rate-corrected QT-interval was established as a biomarker for the risk of sudden cardiac death. Since then, the International LQTS Registry was established; a phenotypic scoring system to identify LQTS patients was developed; the major genes that associate with typical forms of LQTS were identified; and guidelines for the successful management of patients advanced. In this review, we discuss the molecular and cellular mechanisms for LQTS associated with missense variants in (LQT1) and (LQT2). We move beyond the "benign" to a "pathogenic" binary classification scheme for different and missense variants and discuss gene- and mutation-specific differences in K channel dysfunction, which can predispose people to distinct clinical phenotypes (e.g., concealed, pleiotropic, severe, etc.). We conclude by discussing the emerging computational structural modeling strategies that will distinguish between dysfunctional subtypes of and variants, with the goal of realizing a layered precision medicine approach focused on individuals.

Year of Publication
:
2022
Journal
:
International journal of molecular sciences
Volume
:
23
Issue
:
13
Date Published
:
2022
URL
:
https://www.mdpi.com/resolver?pii=ijms23137389
DOI
:
10.3390/ijms23137389
Short Title
:
Int J Mol Sci
Download citation