Skip to main content

Investigation of silver (Ag) deposition in tissues from stranded cetaceans by autometallography (AMG).

Author
Abstract
:

Silver, such as silver nanoparticles (AgNPs), has been widely used in commercial products and may be released into the environment. The interaction between Ag deposition and biological systems is raising serious concerns because of one health consideration. Cetaceans, as the top predators of the oceans, may be exposed to Ag/Ag compounds and suffer negative health impacts from the deposition of these compounds in their bodies. In the present study, we utilized autometallography (AMG) to localize the Ag in the liver and kidney tissues of cetaceans and developed a model called the cetacean histological Ag assay (CHAA) to estimate the Ag concentrations in the liver and kidney tissues of cetaceans. Our results revealed that Ag was mainly located in hepatocytes, Kupffer cells and the epithelial cells of some proximal renal tubules. The tissue pattern of Ag/Ag compounds deposition in cetaceans was different from those in previous studies conducted on laboratory rats. This difference may suggest that cetaceans have a different metabolic profile of Ag, so a presumptive metabolic pathway of Ag in cetaceans is advanced. Furthermore, our results suggest that the Ag contamination in cetaceans living in the North-western Pacific Ocean is more severe than that in cetaceans living in other marine regions of the world. The level of Ag deposition in cetaceans living in the former area may have caused negative impacts on their health condition. Further investigations are warranted to study the systemic Ag distribution, the cause of death/stranding, and the infectious diseases in stranded cetaceans with different Ag concentrations for comprehensively evaluating the negative health effects caused by Ag in cetaceans.

Year of Publication
:
2018
Journal
:
Environmental pollution (Barking, Essex : 1987)
Volume
:
235
Number of Pages
:
534-545
Date Published
:
2018
ISSN Number
:
0269-7491
DOI
:
10.1016/j.envpol.2018.01.010
Short Title
:
Environ Pollut
Download citation